Overview of US work on AES003

R. Geng, AES Meeting at JLab, Aug 2007

- June 5, 2007: AES003 first RF test, quench limited 18.7 MV/m, no x-ray
- July 27, 2007: AES003 2nd test, quench limited 17.6 MV/m, some x-ray
- Passband measurements performed in both tests
 - consistently showing cell #4 and #6 are quenching cell candidates
 - Cell #1 and #9 reached 31.3 MV/m at 8/9pi mode
- August 6, 2007: AES003 3rd RF test with 8 thermometers attached to cell #4 and #5. Data show cell #6 (From field probe port) is quenching cell

R. Geng, AES Meeting at JLab, Aug 2007

AES#3 Pass-Band Result

Pi mode	Cell:1,2,3,4, 5,6,7,8,9	17.6 MV/m	Quench	X-ray 37 mR/h
8/9-Pi	Cell 1,9	21.2 MV/m	No-quench	40 mR/h
4/9-Pi 〈	Cell 4,6	18.5 MV/m	Quench	No x-ray
3/9-Pi	Cell 2,5,8	23.5 MV/m	No-quench	4 mR/h
2/9-Pi	Cell 3,7	22.9 MV/m	Occasional quench	0.3 mR/h

No X-ray when quench occurs in preferentially filled cell 4/6.

R. Geng, AES Meeting at JLab, Aug 2007

Cernox Resistance Temperature Detectors

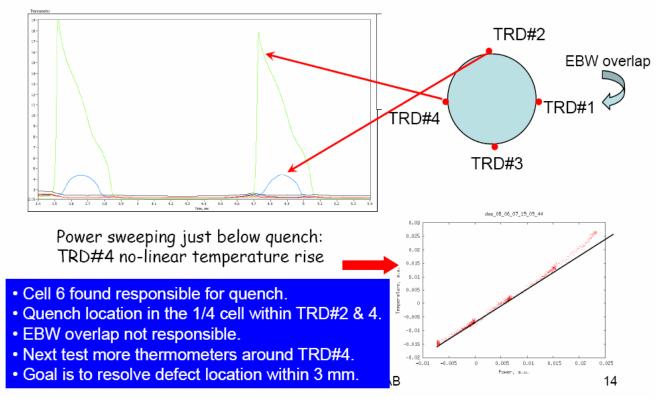
AES#3 2.5th test with thermometry First Step Focused on Equators

Joint test by JLAB and FNAL with help from many colleagues. Special thanks to Dmitri A. Sergatskov

4 TRD on cell #4

4 TRD on cell #6

vity meeting, JLAB


13

R. Geng, AES Meeting at JLab, Aug 2007

Cell #6 from field probe port reacted,

2K bath: TRD#4 cyclic spike of 20K in synchronism with cyclic collapsing field Bath above lamda-point: TRD#4 spike also TRD#2

Cell #4 silent

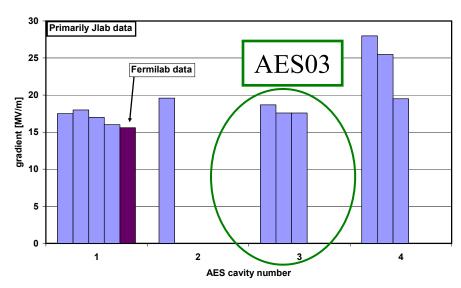
All cavity processing done @JLab

Processing Recipe

J. Mammosser, TTC Meeting at Fermilab, April 2007

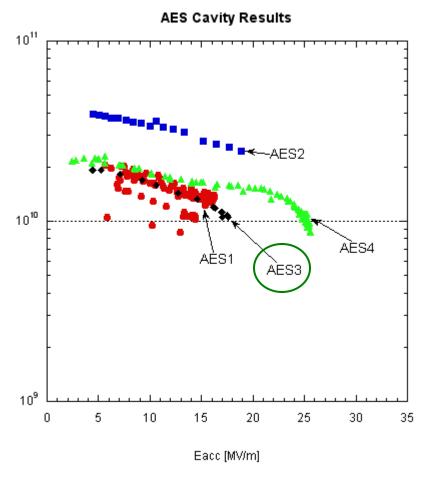
Material Removal (microns) R. Geng, AES Meeting at JLab, Aug 2007

- Processing recipe
 - –Degrease
 - –Electropolishing (20 μm)
 - -Degrease
 - –First HPR+dry
 - -First cleanroom assembly
 - -Second HPR+dry
 - -Final cleanroom assembly
 - -Evacuation and leak check
 - Low temperature (110 C) hake

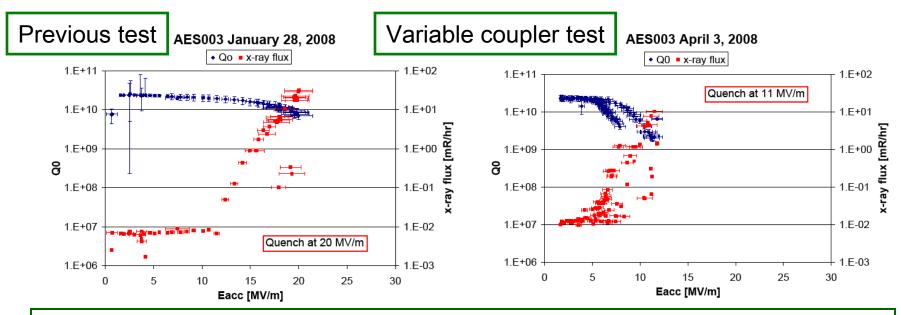

-Low temperature (110 C) bake		
		Note: updates to AES2,3,4 since
		•
Note: all cavities get 150 um bulk EP	avities get 150 um bulk EP	

	1 st	2 nd	3 rd	4 th
	test	test	test	test
A7	172	198	224	251
A6	187	213	239	265
AES1	213	236	252	269
AES2	164	190		
AES3	177	200		
AES4	221	257	277	

e August


JLab: all AES cavities together

Note: updates to AES2,3,4 since August 2007 are not shown


R. Geng, AES Meeting at JLab, Aug 2007

Fermilab AES3 Activity

- Dec 21, 2008: Arrived at Fermilab from JLab
- First Fermilab RF test
 - Jan 3, 2008: Sent to MP9 for vacuum integrity check
 - ~Jan 11: send to IB1
 - Jan 18: Mount AES3 to cryostat top plate
 - ~Jan 23: attach thermometry
 - Jan 24: installed in VTS
 - Jan 25: begin cooldown
 - Jan 28-29: Cold RF test
- Variable coupler installed in cleanroom
- Second Fermilab RF test
 - Mar 31: installed in VTS
 - Apr 3: begin cooldown
 - Apr 3: Cold RF test

Fermilab RF Test of variable coupler

- In between January 28 and April 3 tests, cavity sent to cleanroom to remove fixed coupler and install variable coupler
 - Two faulty flange seals before success
 - Used existing assembly fixtures: cavity horizontal, input port horizontal
 - Variable coupler parts were cleaned in ultrasonic bath, except ceramic feedthrough
 - No cavity cleaning was done, not even HPR
- Apparently, field-emission inducing dust was introduced